Budgeted Optimization with Constrained Experiments

نویسندگان

  • Javad Azimi
  • Xiaoli Z. Fern
  • Alan Fern
چکیده

Motivated by a real-world problem, we study a novel budgeted optimization problem where the goal is to optimize an unknown function f(·) given a budget by requesting a sequence of samples from the function. In our setting, however, evaluating the function at precisely specified points is not practically possible due to prohibitive costs. Instead, we can only request constrained experiments. A constrained experiment, denoted by Q, specifies a subset of the input space for the experimenter to sample the function from. The outcome of Q includes a sampled experiment x, and its function output f(x). Importantly, as the constraints of Q become looser, the cost of fulfilling the request decreases, but the uncertainty about the location x increases. Our goal is to manage this trade-off by selecting a set of constrained experiments that best optimize f(·) within the budget. We study this problem in two different settings, the non-sequential (or batch) setting where a set of constrained experiments is selected at once, and the sequential setting where experiments are selected one at a time. We evaluate our proposed methods for both settings using synthetic and real functions. The experimental results demonstrate the efficacy of the proposed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myopic Policies for Budgeted Optimization with Constrained Experiments (Project Report)

Motivated by a real-world problem, we study a novel setting for budgeted optimization where the goal is to optimize an unknown function f(x) given a budget. In our setting, it is not practical to request samples of f(x) at precise input values due to the formidable cost of experimental setup at precise values. Rather, we may request constrained experiments, which give the experimenter constrain...

متن کامل

Myopic Policies for Budgeted Optimization with Constrained Experiments

Motivated by a real-world problem, we study a novel budgeted optimization problem where the goal is to optimize an unknown function f(x) given a budget. In our setting, it is not practical to request samples of f(x) at precise input values due to the formidable cost of precise experimental setup. Rather, we may request a constrained experiment, which is a subset r of the input space for which t...

متن کامل

Robust combinatorial optimization with variable budgeted uncertainty

Abstract: We introduce a new model for robust combinatorial optimization where the uncertain parameters belong to the image of multifunctions of the problem variables. In particular, we study the variable budgeted uncertainty, an extension of the budgeted uncertainty introduced by Bertsimas and Sim. Variable budgeted uncertainty can provide the same probabilistic guarantee as the budgeted uncer...

متن کامل

Estimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach

This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...

متن کامل

Budgeted Optimization with Concurrent Stochastic-Duration Experiments

Budgeted optimization involves optimizing an unknown function that is costly to evaluate by requesting a limited number of function evaluations at intelligently selected inputs. Typical problem formulations assume that experiments are selected one at a time with a limited total number of experiments, which fail to capture important aspects of many real-world problems. This paper defines a novel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2016